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Summary

This document contains an evolving directory of industrially used formal methods. It
contains a summary of the methods included and detailed entries for each of the
methods that describe the application of the method, its maturity, the availability of
tools etc. Method users are encouraged to comment on the directory and to propose
additions. The format for additions is defined in an appendix and contributions should
be emailed to reb@adelard.co.uk. A Word document containing the skeleton format
may be downloaded from the URL:  http://www.dcs.ed.ac.uk/ewics/fmdir.htm

DISCLAIMER OF WARRANTIES AND LIMITATION OF LIABILITIES

THIS DOCUMENT  WAS PREPARED BY THE MEMBERS OF THE TECHNICAL COMMITTEE 7 OF THE EUROPEAN
WORKSHOP ON INDUSTRIAL COMPUTER SYSTEMS (EWICS TC 7). NEITHER THE MEMBERS OF EWICS TC 7,  THEIR
COMPANIES, NOR ANY PERSON ACTING ON BEHALF OF ANY OF THEM;

(A) MAKES ANY WARRANTY OR REPRESENTATION WHATSOEVER, EXPRESS OR IMPLIED, (I) WITH
RESPECT TO THE USE OF ANY INFORMATION, APPARATUS, METHOD, PROCESS, OR SIMILAR  ITEM DISCLOSED
IN THIS REPORT, INCLUDING MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, (II) THAT SUCH
USE DOES NOT INFRINGE ON OR INTERFERE WITH PRIVATELY OWNED RIGHTS, INCLUDING ANY PARTY’S
INTELLECTUAL PROPERTY, OR (III) THAT THIS REPORT IS SUITABLE TO ANY PARTICULAR USER’S
CIRCUMSTANCE; OR

(B) ASSUMES RESPONSIBILITY  FOR ANY DAMAGES OR OTHER LIABILITY WHATSOEVER RESULTING
FROM YOUR SELECTION OR USE OF THIS DOCUMENT OR ANY INFORMATION, APPARATUS, METHOD, PROCESS,
OR SIMILAR ITEM DISCLOSED IN THIS DOCUMENT.
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1  Introduction

This section of the guideline is a directory of formal methods.  No such directory could ever hope to
be fully comprehensive1.  The approach taken here is to try to cover those methods in common use.
We intend that the directory will grow over time and that this draft of the Directory will be
bootstrapped by the addition of other methods.  If you would like to add an entry for a formal
method you have experience of in an industrial context please see Appendix A. The criteria for
inclusion in this directory are that a method has been used in some industrial applications and that it
provides the means to describe some computational system, express properties of the systems and
verify that properties hold of systems.

Providing a meaningful classification of formal methods is difficult because there is a wide range of
possible criteria upon which the classification could be based.  Possibly the most useful is the
application area of a method - but the available data on the application of formal methods is scant
and poorly co-ordinated.  An attempt is made in Appendix B to provide a classification based on the
theoretical basis of methods.  This provides some basis for comparison but is not strongly oriented
to industrial application.

2  How to use this Directory

This Directory contains information about a number of formal methods in the following structure:

Method: The title of the method.

Summary: A brief summary of the method, its strengths and weaknesses.

Applications: A summary of  the main areas of application.

Properties: A discussion of the kinds of properties which can be described by the method
and the ways of reasoning about them.

Relation to other formal methods: Closely related methods are described and contrasted
with radically different methods.

Theoretical basis: A fairly non-technical description of the kind of computational model
used by the method and how one goes about specifying properties of computations.

Tools: A summary of available tools, their function, robustness, scope, strengths and
weaknesses

                                                    

1 The world wide web has a number of industrial formal methods sites.  One attempt to index these can be
found at the URL:  http://www.csr.ncl.ac.uk/projects/FME/InfRes/applications.  An index of formal methods
tools can be found at the URL: http://www-formal.stanford.edu/clt/ARS/ars-db.html. A general resource for
formal methods can be found at: http://www.comlab.ox.ac.uk/archive/formal-methods.html
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Appraisal: A brief introduction to the five appraisal points given below.

Maturity:  An assessment of how technically mature the method is and its maturity
in terms of process, i.e. harmonising with other software development techniques.

Availability: An assessment of the availability of consultancy, textbooks and
introductions, training, courses etc.

Strength: An assessment of the kinds of areas the methods is strong in expressing
requirements/properties and where it is weak.

Industrial Experience: A summary of experience pointers to specific projects and
companies which have experience of the method.  If there are case studies in the
open literature then these are identified.

Tool Availability: The availability of tools is assessed and names of suppliers in the
case of commercial tools or institutions developing systems otherwise are given.
There is an attempt to be comprehensive here and to avoid commercial bias.

Bibliography: Each entry contains some reference material which provides further
background to the entry.  In addition some entries also have pointers to world wide web or
ftp sites which contain further information on the methods

In addition we have tried to provide two matrices that summarise the type of applications that have
been undertaken with the method and the roles of tools.

If you are new to formal methods then you may need find the overview of the entries in Table 1
useful  The table contains a brief summary and description of the main areas of application of each
of the methods in the directory.  The full entries contain much more information.  The table should
help you eliminate a number of methods which are clearly unsuitable for your organisation, you
should then consider the remaining candidates by looking at the detailed entries.

Table 1:  Overview of methods

Method Summary Applications

CCS provides the means to model
concurrent and distributed
systems and has an associated
logic which can express
properties of systems.

Mature use in protocols verification, use in
modelling and reasoning about safety
systems and hardware.

COLD State-based, algebraic
specification language with

Embedded systems is the main industrial use
to date.
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industrial strength tools

OBJ general purpose formal
specification language, algebraic,
allows abstraction away from
detail

mature in many “data driven” application
areas, including GUI, Secure and Safety
critical systems, communications

SAGA based on the LUSTRE
synchronous data flow language,
can model timing and
concurrency

reactive systems, real-time embedded
systems

Z powerful and flexible notation
based in set theory oriented to
providing functional models of
systems mostly used for
specification

general purpose, operating system
components, databases, security, hardware,
graphics

Raise Model-oriented and algebraic
specification language

Main use is in high-reliability applications in
aerospace and transportation.

B
Method

powerful general purpose set
theory based system with support
for reasoning about
implementations and with tool
support for proof

railway signalling and train control
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3  CCS - a calculus for communicating systems

A calculus for communicating systems2 and its associated logic - the modal mu calculus.

Summary

CCS provides a way of describing the dynamic behaviour of a system.  It does this by giving the
designer the ability to specify the behaviour of the system as potential sequences of atomic (or
primitive) actions.  The logic associated with the system is capable of capturing subtle properties
like integrity

Applications

Very mature use in the specification of protocols.  The LOTOS protocol specification language is
based on CCS.  LOTOS also includes the means to specify data types via algebraic specification
methods.  Recent work includes specification and design support for the implementation of
distributed information systems [6].  A recent book describes the role of CCS in the development of
distributed systems [5].

Properties

The CCS calculus allows the specification of agents which are intended to capture the dynamic
behaviour of systems.  The basic notion at the core of CCS is equivalence of agents.  This notion
can be used to explore the relation between abstract specifications of behaviour and
implementations of the specification.  The logic used with CCS is very expressive and centres on
expressing requirements on the behaviour of systems.  In particular one can express the avoidance
of undesirable behaviour and the eventual occurrence of required events.  Little has been done on
the treatment of data dependent properties.

Relation to other formal methods

Closely related to the family of process algebras and various automata-based approaches3.  In
taking the idea of behaviour as central CCS displays a lose connection with other process-based
methods e.g. CSP, ACP, Meije and other process calculi.  The connection with data-centred
approaches like algebraic and type-theoretic methods is less clear.  Some methods e.g. LOTOS
attempt to combine process and data-centred techniques.

Theoretical basis

The basis is the notion of labelled transition system which aims to capture the potential action of
systems.  A simple example of a labelled transition system is a finite state automaton.  The related
                                                    

2  Information on tools to support CCS can be found at the URL: http://www.dcs.ed.ac.uk/home/cwb

3 Statecharts is probably the most widely used method in an industrial context.  Details of statechart tools can
be found at the URL: http://www.ilogix.com
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logical system expresses properties of such systems.  Such properties can be seen as formalised
requirements.

Tools

There are no industrial strength tools though a large variety of academic tools exist.  These fall into
two categories: algebraic manipulators which aim to aid symbolic reasoning and model checkers
which use state exploration techniques.  These are now capable of analysing systems with large
numbers of states.

Appraisal

CCS provides a powerful method for modelling systems.  The notion of equivalence is capable of
relating seemingly quite different agents.  The logical system is also powerful and elegant though it
takes some time to acquire skill in formulating appropriate properties in the logic.

Maturity: Mathematically highly mature, good experience in protocols, distributed systems and
hardware.

Availability: Few industrial courses available, there are excellent textbooks and a range of
supporting expository works are available.

Strength: Capable of expressing very subtle requirements of systems and detecting difficult
problems in developing implementations from high-level specifications.  Weak on reasoning about
data and linking to data oriented formal methods.

Industrial Experience: Has been used on a number of projects, Praxis UK has used CCS in the
development of a large scale distributed system.  The LOTOS community experience is relevant to
use of CCS.  There is little formal evaluation of the use of CCS in the open literature.

Tools: Currently there are no commercial tools.  There are reliable academic tools which can deal
with medium sized systems - dealing with large systems is still a research topic.  Medium sized
models are useful for reasoning about specifications and specific features of systems.

Case Study Matrix:

Formalization Rigorous Proof Formal Proof

Code Milner’s book [1]
provides an example
formalisation of a simple
parallel while language
and some rigorous
reasoning about
programs.

In two papers Walker [7,
8] considers using the
Edinburgh concurrency
workbench to show
properties of various
mutual exclusion
algorithms.
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System Models [2] contains examples. [2] contains
examples.

Bruns and Anderson [2]
consider a system model
of a safety-critical
communication protocol
and show properties hold
of he system using the
concurrency workbench.

Requirements [5] considers the use of
CCS in a variety of
realistic applications
including requirements
analysis.

Tools Matrix:

Requirements System Models Code

Commercial None None None

Non-commercial The Edinburgh Concurrency
Workbench [3] and the TAV [4]
from Aalborg in Denmark provide
so called “model checkers” which
provide the means to check a
property holds of a system are
useful for reasoning about
requirements, system models and
code.

Bibliography

[1] R. Milner, Communication and concurrency, Prentice-Hall, London, ISBN 0-13-115007-3,
1989.

[2] G. Bruns and S. Anderson, The formalisation and analysis of a communication protocol,
Formal Aspects of Computer Science, 6, 1, pp. 92-112, 1994

[3] F. Moller, The Concurrency Workbench, LFCS Internal Report, University of Edinburgh,
Department of Computer Science, 1990

[4] K.G. Larsen, The TAV tool, University of Aalborg, 1991.
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[5] G. Bruns, Distributed Systems Analysis with CCS, Prentice-Hall, 1997.

[6] G. Bruns, Refinement and dependable systems, 10th COMPASS, pp. 49-56, 1995.

[7] [W1] D. Walker,  Analysing mutual exclusion algorithms using CCS, Edinburgh
University, Department of Computer Science, ECS-LFCS-88-44

[8] [W2] D. Walker, Automated analysis of mutual exclusion algorithms using CCS,
Edinburgh University, Department of Computer Science, ECS-LFCS-89-91
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4  COLD - a Common Object-oriented Language for Design

Summary

COLD4 is a single language unifying the features of a specification, design and programming
language.  There are two main versions: COLD-K, with orthogonal language constructs, explained
in the text book [1] (this version is fine for a basic course on specification at Universities).  In the
user-oriented language COLD-1 specifications are organised according to helpful patterns with
appealing keywords, and several mechanisms are available to manage the name-space of the user-
defined identifiers, as explained in the text book [2] (this version is fine for application-oriented
courses and for applications in real projects).

Applications

Industrial within Philips for embedded software of mass consumer electronics systems in
combination with the SPRINT method [3]. Experimental and educational: many case-studies have
been published, including text-editing [1] pp. 213-239 and [1] pp. 217-405, database query
languages INGRES [1] pp. 171-198 and NDB [5], a copy-management system, a component-
placement machine [6], shadow-mask design [7], and a railway-safety system [2] pp. 125-200.

Properties

For design in the small, the language supports various styles of description such as algebraic
specifications, axiomatic specifications, inductive definitions, pre- and post-conditions, invariants,
abstract algorithmic descriptions, as well as executable specifications.  For design in the large the
language provides constructs for modularization, parameterization and design.  It supports the
notion of a software component as a basic building block for designs.  Some of the characteristic
features that distinguish COLD from other wide-spectrum languages such as VDM are its algebraic
view of states (“states as algebras”) and the strong focus on techniques for design in the large.

Relation to other formal methods

The language is influenced by VDM and by algebraic specification languages.  VVSL is partially
based on the same theoretical basis.  In [2] a formal connection is established with graphical
notations (HOOD, Venn-diagrams, SKL, dataflow diagrams etc.).

Theoretical basis

For a survey see [8].  Three novel systems of logic were devised specially for COLD:

•  the logic MPLω [9] (based on Scott’s E-Logic [10]),

•  class algebra [11] (related to module algebra [12]),

•  the calculus λπ (see [4] pp. 88-141 or [13]).

                                                    

4 Information on COLD may be found at the URL: http://www.cs.rug.nl/~rix/cold.html
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There exists a formal definition of the semantics: [14].  The language includes dynamic logic [15]
and inductive definitions [16].

Tools

For COLD-K there exists a typechecker.  For COLD-1 there is a typechecker called TYCOON and
a standard library called IGLOO.  For SPRINT [3] there is amongst others a code generator which
accepts the language PROTOCOLD, which is a subset of COLD-1.  All tools run on SUN-3 and
SUN-4.

Appraisal

Maturity: 5 years work on foundations (1983-1988), more than 9 years work on
industrialisation.

Availability: text books [11, 12] and [4] are readily available.  Tools are owned by Philips.

Strength: both a theoretical basis and a user-oriented version (COLD-1) exist.

Industrial Experience: embedded software of mass consumer electronics systems.

Tool Availability: contact Philips

Applications and Experience Matrix:

not available

Tools Matrix:

not available

Bibliography
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5  OBJ - an Executable Algebraic Specification Language.

(Alternatively referred to as an ‘Abstract Data Type’ or ‘ADT’ language).

Summary

OBJ5 is a general purpose Formal Specification language which enables users to think about and
specify the essence of a system or model in simple algebraic terms, without concern for lower-level
implementation detail.  Specifications are directly executable.

Applications:

OBJ has been used in many diverse applications including the specification of: GUI standards;
High-integrity Software Tools; Secure Systems.  Safety-critical Systems; Protocols;
Communication Systems.  Programming Language Semantic Definition.

OBJ seems best-suited to data-driven applications, where the notion of ADT has a ‘natural’ fit with
its real-world counterpart.  However, all systems can be thought of in some sense as ‘data driven’.
So, if you can identify data and actions to perform thereon, then you can go about specifying (or
modelling) the system in OBJ, [7, 3, 10].

Properties:

There are two parts to the language:

Theorems which are non-animatable and specify in precise abstract terms what is required from an
operator or system transition, and

Constructive Specifications providing an animatable specification of the intended system.

Users typically develop the Constructive Specification, which since it can be ‘brought to life’ via
tool-supported animation, leads to fast and early validation feedback and specification iteration.
Then, depending upon the criticality or degree of rigour demanded for the application, go on to
define the key Theorems to tie down required behaviour, safety- or security-critical invariants etc.
(It is not uncommon for applications to be developed against the Constructive Specification alone -
i.e. without recourse to the, generally more intellectually challenging, Theorem definition).

Both Theorems and Constructive Specifications can be (and usually are) refined.  Typically an
initial Constructive Specification is devised at a high level of abstraction.  This introduces Abstract
Data Types (i.e. named types, but without any implementation make-up details) and operators
acting upon these types.  Subsequent levels of refinement may seek to bring out internal make-up of
the data types, together with further detail as to algorithms to be employed.  Relation to other
formal methods: Industrial users have developed a ‘fit’ with the MALPAS Program Analysers [1].

                                                    

5 Information on the family of OBJ methods can be found at the URL:
http://www.cs.ucsd.edu/users/goguen/sys/obj.html.  Further information can also be found at the URL:
http://lex.ucsd.edu/semcomp
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This approach has been found to provide a practical rigorous development route from Specification
to End-System, with a high degree of V&V support from Commercially Available Toolsets.

LOTOS uses a derivative of OBJ called ACT One for its data dependent modelling.

OBJ Theorems use Z-Like constructs with existential and universal quantifiers and first order logic.

The output of the Formal Specification exercise can be a Functional Specification comprising exact
procedure or function signatures coupled with defining pre-, and post-conditions as per the VDM
approach.

Another output is a comprehensive suite of end-system test cases to probe for implementation
conformance to specification.  These test cases are the end-system counterpart of specification
‘verification’ tests developed early in the lifecycle, before the move to detailed design. [4, 5, 6]

OBJ is well-suited to the specification of 3GL or OO-based systems. [10]

Relation to other formal methods:

Theoretical basis:

OBJ uses basic algebra.  A Constructive Specification is composed from modules, each module
introduces ADT’s (Abstract Data Types - the elements of the algebra) and Operators which act
upon the ADT’S.  Operator action is defined in terms of equations, whereby the left-hand-side of an
equation is a ‘start’ point for the action, the right-hand-side gives the result of the action.

For example, we might have an operator defined by:

Safe to open?: Valve-id, Pipe → BOOL

A behaviour-defining equation for this operator might be:

Safe to open?(V, P) = T IF Pressure in pipe P < Excess and Sensor on V == OK

Animation (direct Specification execution) is performed by treating such equations as left to right
rewrite rules.  That is, an expression which embodies an instance of a left-hand-side of an equation
will have that matching portion rewritten to its corresponding right-hand-side [2, 7].

Tools:

Commercially available: ObjEx toolset, Gerrard Software Ltd, UK (UNIX and VAX VMS), [8].

Academically available: OBJ3, Stanford Research Institute, USA, and PRG, Oxford University,
UK.

Other tools such as Theorem Support Aids, Test Case Generators etc. are still in their infancy,
although these are current research areas.
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Appraisal:

OBJ is a mature, stable Formal Specification Language with industrially-proven methods of
application.  It does not demand a vast artillery of Mathematical skills and notational familiarity
from its users.  As such, it has often been said to be ‘an Engineer’s Formal Specification Language’.
OBJ benefits from an easily learnt, and easily understood notation.  Benefits both in terms of ease
of take-up, and arguably more importantly, ease of specification assimilation and validation.

An OBJ User Group was formed in 1990. (Contact Mr David Nuttall, British Aerospace
(Dynamics) Ltd, PB 218, PO Box 19, Six Hills Way, Stevenage, Hertfordshire, UK).

Maturity: OBJ has evolved and appeared in various syntactic guises since the mid-1970’s
and has a world-wide body of usage experience since that time.

Availability: Industrial courses and support consultancy are available.  There isn’t a
definitive text-book, but an introduction can be found in [7, 10].  A language definition for
a commercial tool-supported form of OBJ appears in [9].

Strength: OBJ is capable of expressing data-orientated properties and requirements in a
simple, easily learnt and readable manner.  It is weaker, and requires more effort and user
experience, to apply to process-orientated requirements.

Industrial Experience: OBJ has been used on a number of projects: GEC-Marconi Secure
Systems in the UK have used OBJ in the specification and V&V of trusted, secure systems;
Hughes Aircraft Corporation in the USA and AEW, Sweden and Australia have used OBJ
in safety-critical applications; Thorn-EMI in the UK have used OBJ in the specification of
high-reliability software tools; British Aerospace have used OBJ in systems development
trials.

Tool Availability:  see above

Applications and Experience Matrix:

not available

Tools Matrix:

not available
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6  SAGA - LUSTRE

Summary

SAGA is a design tool based on the LUSTRE6 synchronous data flow language.  The language can
be used for both design and specification.  The language has a simple formal semantics which is
design to allow the designer to characterise and reason about the behaviour and timing
characteristics of systems.  System descriptions are intrinsically parallel consisting of a collection of
synchronised program components which loop indefinitely to provide the response to stimuli from
the operating environment.

Applications

The application domain is: reactive systems, real-time embedded systems and real-time automatic
control.  SAGA has the potential to describe and implement PLC based systems.  It is also used for
hardware specification and design.

Properties

The systems described by LUSTRE are essentially finite-state and thus arbitrary properties of the
system may be formally checked using model checking techniques.  This feature has been
experimented with in an industrial setting but is not yet available on the market.  At the moment the
SAGA tool provides the means to check:

Causality: In the nth cycle of operation the output only depends on inputs received at or
before the nth cycle.

Bounded Memory: there must exist a finite bound on the number of past input values
necessary to define an output.

Relation to other formal methods:

The language belongs to the broad family of process calculi and is closely related to the Meije
calculus.  The system is intended to provide facilities for the modelling an design of the behaviour
of systems.  The use of data-flow notation provides a connection to the language LUCID.  Other
synchronous languages include ESTEREL which has been used in similar application areas.

Theoretical basis

 SAGA is a, synchronous data flow language.  This means that program variables are considered to
be infinite sequences of values and a program shows how to generate those sequences.  The
environment variables are also modelled as infinite sequences which can change to reflect changes
in the environment.  The successive values can be thought of as the evolution of the system through
one tick of a clock.  The language is synchronous in the sense that all environmental and
programmed stimuli which can happen at the next instant are gathered together and the evolution of

                                                    

6 Information on LUSTRE and contact information for tool suppliers can be found at the URL:
http://www.imag.fr/VERIMAG/SYNCHRONE/lustre-english.html
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the system is calculated to arrive at the new system state.  This calculation is considered to be
instantaneous.

Tools

The SAGA tool has been sold by VERILOG since 1992.  Currently the system consists of a
compiler plus design tool.  This is capable of verifying some basic properties of a system to cheek it
is well-formed.  Experiments with a tool for formal verification of properties have been carried out
inside Merlin-Gerin.

Appraisal

SAGA - LUSTRE provides a powerful mechanism for the synchronous modelling of systems based
on data-flow notation.  The system provides a high level mechanism for the modelling of the
behaviour of systems and the data they manipulate.  Currently formal verification capabilities of the
tools are limited but the formal semantics of LUSTRE means it is possible to construct formal
verification tools.

Maturity: The method is used in an industrial context for the design of critical software.
Merlin-Gerin have used the system in the design of a nuclear power plant emergency
shutdown system.  See [1, 3] for details of the us of the system.  The SAGA tool has been
commercially available for the last two years.

Availability: The tool is commercially available.

Strength: The system provides a powerful means of modelling data and behaviour in
systems.  Currently, expressing properties of the system is limited but this can be remedied.

Industrial Experience:  See under maturity.  A number of case studies exist, including a
study in the area of railway signalling and nuclear protection systems.

Tool Availability: Verilog market the SAGA tool.  The contact address is:

Daniel Pilaud
VERILOG- Miniparc - zirst rue Lavoisier
38330 Montbonnot Saint-Martin
FRANCE

Applications and Experience Matrix:

not available

Tools Matrix:

not available

Further Description:

SAGA is a data flow language, thus each variable of the program is considered to be an infinite
sequence of values and a program sets about defining those sequences.  The sequence can be
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thought of as time progressing in “ticks” of some clock.  The following fills in some additional
detail on the nature of SAGA.

Saga is a structured language

The SAGA language allows the top-down hierarchical decomposition for both data and functions.
Controls are made to ensure the consistency of these decomposition with respect to a. strong type
concordance.

Saga is a synchronous language

Contrary to what we call asynchronous languages in which the time is a “continuous” one (i.e.
represented by the set of real numbers), the notion of time in SAGA is a discrete one (i.e.
represented by the set of integers).

The synchronous assumption means that theoretically, calculi don’t take any time, no duration is
taken into account in the expression of the behaviour.  Practically, the time taken by the calculus
only needs to be always less than the time required for a new event to occur.

In the case of SAGA, the program scans the inputs, so we can consider that cyclic scanning defines
the time scale of the discrete time.  Two events are thus seen either at the same cycle (i.e.
simultaneously) or at two strictly different cycles.

With the synchronous behaviour, the program calculates synchronously to the scanning period or
more practically strictly between two successive scanning actions.

Saga is a data flow language

With SAGA, each system, each program is considered as a function which transforms its inputs into
outputs.  The function implemented by the program is specified as a system of equations which
defines outputs from inputs, using possibly some internal variables.  The approach of the
programming in the usual languages is different from the one in SAGA.  Indeed, in the former,
defining the system behaviour consists of defining the sequence of actions which leads to the
calculus of the outputs from the inputs.  In the latter, outputs are defined directly from inputs by
means of systems of equations.

Since the systems we implement are “non-terminating”, we will consider data as infinite sequences
of values which represent the data evolution all along the system life.  The number of the sequence
is interpreted as the number of the system cycle.  For example, the equation y = f(x) is an equation
on sequences and means that the nth term of y (yn) is defined from the nth term of x (xn) and equals
f(xn).

In other words, considering that applications are cyclic and successively compute the values of the
variables at the first, second,…cycle:

yn is the value at the nth cycle of the application and is calculated from xn the value of x at the
nth cycle of the program.
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The basic operators of the language are the classical ones extended to sequences. As an example,
consider the expression

X= if Y>0 thenY else −Y

means

∀ i ∈  N.Xi = if Yi > 0 then Y i else −Yi

and defines X as the absolute value of Y.

There are two specific operators pre (standing for previous) and → (pronounced “followed by”)
which are respectively the memorisation operator and the initialisation operator.  If X is the
sequence 〈X1, X2, X3,…〉  then

pre(X) = 〈nil X1, X2, X3,…〉

where nil is the undefined value.  If Y is the sequence 〈Y1, Y2, Y3,…〉 , then

X →Y = 〈X1, Y2, Y3,…〉

This operator is needed to give the variable a particular value at the first cycle of the program.
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7  Z Specification Language - The ZF-set theory and schema calculus

Summary

The Z7 specification language is a model-based approach to formally describing software systems
(so-called because one builds an abstract mathematical model of the state and operations of the
system to be developed [1]).  The major strengths of Z are its powerful, flexible and expressive
notation, and its ability to provide structured specifications.  Its major weakness is a lack of
methodological guidance.

Applications

Due to the rich type system of Z, it has been used for a wide range of general computing
applications.  Specific examples include the specification of file systems, databases, security
properties, hardware (i.e. processors), graphics systems, and some work on communication systems.

Properties

The strength of Z lies primarily in describing the state of a model, and the operations which can be
performed on that state (indeed this approach has led to a number of suggestions for object-oriented
extensions to Z, which are summarised in [20]).  Both operations and state are typically represented
by named schema (a schema is a structuring mechanism which effectively associates variable
definitions with a logical formula).  The use of a schema typically limits scope of variables used
within a particular operation or state to that schema (an axiomatic schema may be defined in which
variables have a global scope).  Schema may include other schema either as types (in which case
the included schema is treated in a similar way as a record definition), or in a form of inheritance.
Schema may be defined generically, and instantiated with desired types.  Furthermore, it is possible
to combine schemas by means of the schema calculus.

Reasoning about Z schemas is done by the conventional proof apparatus associated with first order
predicate calculus.

Relation to other formal methods

Z is very similar to the VDM technique, particularly since a revised version of VDM provided
enhanced modularity.  There are differences in syntax (obvious to users) and semantics (hidden
from most users). [3] Highlights the main differences.

Process calculus (e.g. CCS, CSP) are very different from Z. Whereas the strengths of the former lie
in defining communications between processes, the latter is more suited to a static view of a model.

Theoretical basis

Z is based upon a presentation of ZF-set theory in first order predicate calculus.  This small core can
be extended by means of toolkits (for the most widely known, see [5]) to deal with a, wide range of
types (including tupelos, sequences and “enumerated types”).

                                                    

7 Information on Z, tools and vendors can be found at the URL: http://www.comlab.ox.ac.uk/archive/z.html
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Structuring of Z specifications is achieved by means of the schema calculus, which provides rules
for schema to be related by logical operators (and, or, not, implies), or composed in other ways.

Tools

A wide variety of tools have been developed for assisting Z specifications, a large proportion of
which are summarised in the ZIP Project Z Tools Catalogue [4].  These tools range from public
domain through to Commercial.  Tools cover many aspects of the development of Z specifications,
including: syntax checking, type checking, expanding schemas, proof checking, animation, and
calculating preconditions.

Appraisal

In addition to its technical strengths, Z benefits from its wide use as a teaching exemplar and the
range of application it has found in industrially relevant case studies.

Maturity: The Z notation has been in existence since around 1978, and since that time has
been gaining considerable popularity in academic and industrial circles.  Recently (1990),
the ZIP consortium was formed to work towards the definition and development of
standards, methods and tools for Z. Deliverables from this group include the Z Base
Standard [14], the Z Tools Catalogue [4], and an annotated Z bibliography [15].
Availability: Z benefits from a high profile in both academia and industry.

Courses are offered by a variety of sources (academic and industrial).  An increasing
number of introductory textbooks are available including [6, 7, 9, 12 and 13].  The Z User
Group holds an annual conference, and a large number of papers related to Z frequently
appear in the “Formal Methods Europe” conference.  An electronic mailing list dedicated to
Z related issues is moderated by Jonathan Bowen (requests to subscribe to the list should be
sent to zforum-request@-comlab.ox.ac.uk). An archive of Z files (including back issues of
the z forum newsletter and a comprehensive Z bibliography) is available via ftp at
ftp.comlab.ox.ac.uk or WWW at hhtp://www.comlab.ox.ac.uk/archive/z.html.

Strength: Z is particularly suited to expressing specifications for small and medium size
applications (although the schema calculus does help with structuring the specification,
large specifications will need some additional form of assistance).  The type system of Z is
sufficiently rich to express a wide variety of data types easily.  In its basic form, it is not
capable of reasoning about temporal constraints, concurrency and other non-functional
requirements.

Comparatively little work has been done on the presentation of refinements (and indeed
proofs in general) of Z.

Industrial Experience: Z has been used on a wide variety of “real” projects. The Queen’s
Award for Technological Achievement was awarded in 1992 for the use of Z in the IBM
CICS project [16], in 1990 an award was also presented for the development of the IEEE
standard for floating point arithmetic on the T-800, which was specified in Z [17, 18].
Craigen et.al.[21] have conducted a survey into industrial usage of formal methods, which
covers the above applications, and others besides.
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Z has also been used in projects covering the development of secure databases,
oscilloscopes, case toolsets, and graphics kernels.

Tool Availability: A large number of tools are available for Z, many of which are
summarised in the ZIP project Z tools catalogue [4].  The tools are available on a wide
variety of platforms.  Suppliers include YSE (CADiZ), Logica Cambridge (Formaliser),
Mike Spivey, PRG, Oxford University (Fuzz), Bernard Sufrin, PRG, (Zebra) and Xiaping
Jia, DePaul University, Chicago (ZTC).

Applications and Experience Matrix:

Formalization Rigorous Proof Formal Proof

Code Work at Durham
University is
investigating the
derivation of formal
specifications (in Z and
VDM) from “legacy
code” [19].  The work
performed by IBM and
the PRG is aimed at
providing a formal
description of the
interface to the CICS
system.  Work has also
been performed on
defining microprocessor
instruction sets [22].

Stepney [2] defines a
compiler for high
integrity systems.
Although the code for
the compiler is not
given, both the source
and target languages are
defined in Z (in terms
of denotational
semantics), and
reasoned about
formally.

None.

System Models A collection of case
studies which formalise
properties of system
models is given in [7],
which includes
databases, the UNIX
filing system, a
telephone exchange and
an assembler.

Clark et al present a
case study of a Motor
Speed Control Loop
which contains a
rigorous proof of the
satisfaction of safety
properties [10].
Mahoney examines
timed refinement in the
context of a mine pump
case study [8].

Pilling et. al. [11]
provide a model of
realtime scheduling
algorithms, and give
proofs that certain
properties are
formalised.

Requirements Since the modus
operandi for Z is to
construct a model of the
system being built,
there is nothing to

See proceeding
comment.

See proceeding
comment.
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distinguish between
requirements and
system models (from
the perspective of a Z
specification).

Tools Matrix:

Formalization Rigorous
Proof

Formal Proof

Commercial The formalisation of problems
generally involves assistance in
syntax checking and type
checking. The following
commercial tools support this:
Balzac, CADiZ, fuzz,
Formaliser, Genesis.

None Balzac, CADIZ,
Genesis, Mural and
ZEDB & B

Non-
commercial

Public domain tools providing
syntax and type checking
include: Zebra and ZTC.
Development tools (not
publicly available) include
ZADOK, Forsite, IBM Z Tool,
ZEE, ZEN, ICL Z tool.

ICL Z Tool
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8  RAISE (Rigorous Approach to Industrial Software Engineering)

Summary

The RAISE8 method uses the RAISE Specification Language (RSL) for rigorous software
development.  RSL is a wide-spectrum language that includes model-oriented features and algebraic
ones as well as concurrency constructs.  The development method is based on the following
principles separate development (of individual modules), stepwise development, invent and verify,
and rigorous justification.  The method has a defined refinement/implementation relation on which
justification of the correctness of development is based.  The strengths of RAISE are its powerful
specification language, its guidelines for specification and development, and its comprehensive
tools.  Its major weakness is the low level of automation in the justification tools.

Applications

RAISE has been used in a number of different application areas, typically characterised by
requirements for high reliability such as aerospace and transportation.  Particular examples include
train protection systems, satellite image processing, tethered satellite systems, concurrent data
servers and car engine control systems.

Properties

An RSL specification of a system consists of a collection of modules, some of which may be
parameterized schemes that can be instantiated with for example particular types.

The wide-spectrum nature of RSL means that system properties can be expressed in a variety of
ways.  They can be expressed purely applicatively or imperatively, i.e. by defining a state and
operation on it.  They can be defined using an algebraic style with sorts and axioms or in a model-
oriented fashion with elementary and composite types and operations on values of those types.  A
system can be defined in a sequential or a concurrent style; the latter using synchronous point-to-
point communication over channels.

RSL has a collection of proof rules in addition to its formal semantics.  The proof rules are the basis
for reasoning about properties of a system.  The set of basic proof rules for RSL are given in [19].

Relations to other formal methods

The model-oriented parts of RSL are similar to those of VDM, but with some syntactic and
semantic differences.  The algebraic parts of RSL have been influenced by ACT ONE, Clear and
OBJ.  The concurrency parts include constructs similar to the explicit style of process definition
used in CSP, but with an underlying concurrency model similar to CCS.

RAISE uses the ‘invent and verify’ approach to development as opposed to the transformational
approach which is used by for example PROSPECTRA.

                                                    

8 Further information on raise can be found at the URL: http://dream.dai.ed.ac.uk/raise/
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Theoretical basis

The formal implementation relation of RAISE is based on theory implication, i.e. the theory of an
implementing specification must imply the theory of the implemented specification, where the
theory of a specification is the logical properties of the specification.  This means that RAISE has a
proof theoretic approach to implementation.

Properties of a system are described by a collection of RSL modules, each of which may define
types, values (functions and constants), variables, channels (for communication), axioms and
(nested) modules.  Values are either defined by axioms, by pre/post definitions or an explicit
expression (a body).  The semantics of specified properties of values is loose, i.e. any value
satisfying the properties is included in the possible models denoted by a specification.

Tools

Currently one set of RAISE tools is available; it includes:

•  Syntax-oriented editors with type check for writing and checking the 4 kinds of RAISE entities:

•  modules (i.e. specifications)

•  theories (in which expected properties of modules may be expressed)

•  development relations (in which formal relations between modules may be expressed)

•  hints (in which informal text can be recorded)

•  Pretty-printer which generates LATEX source code for RAISE entities.

•  Translators from RSL to Ada and C++.

•  Justification tools consisting of:

•  Syntax-oriented editor with type check for developing and checking justifications
(including formal proofs)

•  Implementation condition generator, which generates necessary and sufficient
conditions for the formal implementation relation to hold

•  Confidence condition generator, which generates conditions on expressions based on
subtypes, preconditions etc.

•  Simplifier, which automatically discharges simple and trivial justification conditions.

Appraisal

 Maturity: RAISE was originally developed from 1985 to 1990 as part of an ESPRIT
project of the same name.  During the LaCoS ESPRIT project (1990-1995) it was assessed
in a number of industrial trials, and in particular the method and the tools have evolved and
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been industrialised.  The method has been used in combination with existing industry
process standards such as the European Space Agency’s (ESA’s) PSS-05, see [17] and [20].

Availability: Both RSL and the RAISE method are described in books published by
Prentice Hall, [18] and [19].  Currently RAISE is being taught at a few universities.
Tutorials have been given at “Formal Methods Europe” symposia and other conferences.  In
addition, courses and consultancy are provided by CRI.

On-line information on RAISE is available on the Web system at the following address:
http://dream.dai.ed.ac.uk/raise/

Strength: RSL is able to express functional properties of a system at different levels of
abstraction from a high-level axiomatic one to low-level algorithmic details that are close to
a program.  Moreover the modularity systems of non-trivial size.  Also the inclusion of
concurrency constructs in the same language supports a direct expression of parallel
systems.  RSL does not have built-in constructs for expressing real-time properties. they
have to be “modelled” by using other constructs in the language.

Industrial Experience: The majority of the industrial experience with RAISE stems from
the LaCoS project, where seven European companies used and assessed RAISE.  The
overall project experiences are documented in [7] and [8].  A number of more detailed
technical application descriptions and assessments also exist for the following LaCoS
applications:

•  “Assessment Report” [5] by Bull describing the application of RAISE on
cryptographic protocols.

•  “4th Assessment Report” [16] by Inisel based on the development of an
image processing system.

•  “4th Lloyd’s Register Assessment Report” [9] by Lloyd’s Register based
on a number of smaller applications:

•  a signal condition processing system

•  an engine management system

•  a simulation problem

•  a security model

•  a library of reusable components

•  “Report On the Development Process” [1] by Matra Transport describing
the application of RAISE on an automatic train protection system.
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•  “SSI Public Assessment Report on the TCA Application” [6] by SSI based
on the development of parts of an air traffic control system.

•  “Final Assessment Report” [21] by Technisystems based on the
development of a shipping transaction system.

RAISE has been used within an ESA project to formalise central parts of an Instrument
Control Unit (ICU), [20].

Tool Availability: RAISE is supported by the “RAISE tools” which are commercially
available from Computer Resources International (CRI).  The tools run on Sun Unix
platforms.

Applications and Experience Matrix:

Formalization Rigorous Proof Formal Proof

Code An application by Bull
within the LaCoS
project formalized an
existing concurrent data
server with the aim of
Ending errors in the
implementation.

The Bull application did
rigorous justifications
of expected properties
of the data server
specification.

None.

System Models Most of the applications
in the LaCoS project
(see “Industrial
Experience” above)
involved specifying
system properties using
RSL.

In [13] safety and
progress properties of a
concurrent system are
demonstrated. [10]
specifies and rigorously
justifies properties of an
industrial robot.

In [14] a formal
development of a
concurrent system with
proof of correctness of
the development is
presented,

Requirements Since a RAISE
development typically
starts by formalising the
requirements and then
later constructing
refined models, most of
the applications in the
laces project (see
“Industrial Experience”
above) involved the
formalization of
requirements.

None. None.
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Tools Matrix:

Formalization Rigorous Proof Formal Proof

Commercial The RAISE tools
support the syntax and
type checking of
modules, the recording
of development
relations and the
expression of expected
properties of modules
in the form of theories.

The justification editor
of the RAISE tools
support the interactive
construction of proofs
that may include
informal arguments.

The justification editor
of the RAISE tools can
be used to construct
fully formal proofs.

Non-
commercial

None None None.

Further Description:

Both [2] and [6] describe projects within the aerospace domain where RAISE has been used and
Ada code produced by automatic translation of RSL specifications.
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9  B9 method

Summary

A full development method from formal specification refined to high-level language, tool support
and translation to Ada, C etc. available.  The basic idea is of a machine with internal state and
operations which are called by other machines or as reaction to environment. State has invariant and
operations which can be underspecified and refined later. Similar mathematical foundation to Z
underpins notation and language (no schemas but lots of set theory and functions). Highly
structured, intial structure is preserved down to code level so it is important for this to be correct.

Could be used without carrying out proofs, i.e. for structuring and code generation.

Applications

General purpose but main serious use is on railway signalling systems.

Properties

Anything expressible in set-theory, functional behaviour reasoning via set theory and small number
of principles and user-defined lemmas.

Relation to other formal methods

Foundations similar to Z.

Theoretical basis

Set theory, with fixed points, programming and specification constructs defined through extension
of substitutions (generalised substitutions).

Tools

Atelier-B and B-tool both commercial products.

Atelier-B: is quite fast, robust etc. works under workstations (Sun, HP) and Linux on PCs
using X windows, heart of system is a prolog-like core for reasoning. Good project control
and information (e.g. regeneration of proofs after changes, tracking of dependencies,
information on number of proofs completed/outstanding), uses stand-alone editor on text
files (you can change the editor) and could be customised as intermediate files are text
based. Theorem proving now combines automatic with interactive proof for lemmas. Now
feasible to prove developments completely by adding required lemmas and proving them.

B-tool: provides similar facilities also under X windows on workstations (availability for
PCs not known), includes animation of initial spec (under development for Atelier B).
Perhaps not as fast and theorem prover rules less comprehensive.

                                                    

9 Further information on the B method can be found at the URL: http://www-
scm.tees.ac.uk/bresource/docs/B/BROOT.html or at: http://www.atelierb.societe.com/PAGE_B/uk/atb-01.htm
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Appraisal

Maturity: Yes, role in process is developing e.g. in REAIMS esprit project.

Availability: Medium, improving as time passes. Books now available (see bibliography),
training available now through B core, and from Steria-Mediterranee for Atelier B.

Strength: Good integrated development method, specs perhaps a little limited in style, much
development effort put in e.g. by French institutions and BP (original effort).

Industrial Experience: GEC Alsthom use Atelier B on 10+  industrial projects for real
safety-critical and safety-related code. Matra transport use Atelier B to develop metro line
control system. B-tool used in trial with Lloyds Register and in GEC Marconi aerospace.

Tool Availability: Good, B-tool from B-core and Atelier B from Steria-Mediterranee
France.

Applications and Experience Matrix:

Formalization Rigorous Proof Formal Proof

Code Not applicable Not applicable Yes, GEC Alsthom,
Matra

System Models No No Yes, GEC Alsthom,
Matra

Requirements No No Yes, GEC Alsthom and
REAIMS

Tools Matrix:

Formalization Rigorous Proof Formal Proof

Commercial Atelier B, B Tool

Non-commercial
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10  VSE - Verification Support Environment

Summary

VSE10 is a tool that permits formal software development, from formal specification and
verification to (partly) automatic code generation, including support of the development
documentation. Within the formal specification the security (safety) model, the formal top level
specification and refinement steps are created with the formal specification language VSE-SL. The
deductive component of the VSE system for automatic proof obligation generation and
semiautomatic proofs consists of integrated versions of KIV (Karlsruhe Interactive Verifier) and
INKA (Induction prover Karlsruhe). The KIV system is mainly used to handle proof obligations
involving programs, while INKA is used for proving first-order predicate logical subtasks (e.g.
verification conditions) including induction.

Applications

VSE is a general purpose tool for formal development of sequential critical systems within the
security and safety area.

Properties

 Properties are described in security- or safety models within the specification language VSE-SL.
The dependencies between functional specification and these models are defined in SATISFIES-
relations that have to be formally proved. Because of transitivity the dependencies hold through all
following refinement steps

Relation to other formal methods

Both the method and main characteristics of the tool can be somehow related to the B-Method and
B-Tool.

Theoretical basis

The specification method is based on abstract data types and state transition systems using first
order predicate logic (with equality). The proof component consists of two theorem provers (KIV,
INKA).

Tools

The VSE-Tool is commercially available. A list of distributors can be requested through BSI, Ref.
II1, Attn. Mr. Koob, Postfach 20 03 63, 53133 Bonn, Germany

Appraisal

Maturity: The tool is based on a method that had been developed in universities and research
institutions for the last 10 years. It combines that well founded method with up to date development
techniques including interfaces to conventional CASE-tools.

                                                    

10 Further information on VSE can be found at the URL http://www.dfki.uni-sb.de/vse/projects/
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Availability Consultancy, textbooks and introductions, training, courses etc. are available through
the a.m. address.

Strength: Being a general purpose tool for formal software development it naturally has weaknesses
if the method and the tool is compared to specialized methods. Of course in general model checking
works better where it can be applied.

Industrial Experience: Two case studies with large systems exists. After the development of VSE
eight pilot projects in the areas of both security and safety were carried out. In 1995 VSE was
officially recommended for formal software development and evaluation according to ITSEC
(Information Technology Security Evaluation Criteria). Currently VSE is used in two real industrial
system development projects and three ITSEC evaluations.

Applications and Experience Matrix:

Formalization Rigorous Proof Formal Proof

Code

System Models

Requirements

Tools Matrix:

Formalization Rigorous Proof Formal Proof

Code

System Models

Requirements

Further Description

Currently, 1996-1999, VSE is modified and improved in a follow on project. Based on Temporary
Logic of Actions (TLA), VSE-II will be able to handle specification and correctness proofs of
concurrent and real-time systems. Further on besides optimisation of the deduction component
interfaces to Model Checking and the Z language will be implemented
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Appendix A  Filling out a new entry

Each entry in the guideline has a standard format which should help the potential user assess the
suitability of the method for their application.  Each entry in the directory has been generated by
individuals familiar with the particular method.  The format and the instructions supplied to those
completing an entry are:

Method:

Give the title of the method.

Summary:

This should provide a brief summary of the method, outlining the main areas of application, its
strengths and weaknesses.

Applications:

Summarise the main areas of application.

Properties:

Discuss the kinds of properties which can be described by the method and the ways of reasoning
about them.

Relation to other formal methods:

Point out closely related methods and contrast with radically different methods.  The main aim is to
try to give some cues to potential users.

Theoretical basis:

Try to be fairly non-technical - describe the kind of computational model an how one goes about
specifying properties of computations.

Tools:

Give a summary of available tools, their function, robustness and scope.  Identify their strengths
and weaknesses

Appraisal:

Give a brief introduction to the five appraisal points given below.

Maturity: Assess how technically mature the method is and its maturity in terms of process,
i.e. harmonising with other software development techniques.

Availability: Assess the availability of consultancy, textbooks and introductions, training,
courses etc.

Strength: Assess the kinds of areas the methods is strong in expressing
requirements/properties and where it is weak.
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Industrial Experience: Try to be as concrete as possible, preferably point to specific
projects and companies which have experience of the method.  If there are case studies in
the open literature then point to these too.  Tool Availability: Assess the availability of
tools.  Give names of suppliers in the case of commercial tools or institutions developing
systems otherwise.  There is no need to be comprehensive here

Applications and Experience Matrix:

Formalization Rigorous Proof Formal Proof

Code

System Models

Requirements

Tools Matrix:

Formalization Rigorous Proof Formal Proof

Code

System Models

Requirements

For each cell point to some work which has been done in the area. Try to give references where
possible.  If there is no work in the area then say so.
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Appendix B  Classification of methods by their theoretical basis

In a perfect world we could give a complete characterisation of the various qualities of evidence we
could expect from each different formal method but unfortunately at the moment this is not
possible.  Ultimately the qualities of evidence generated by the application of any particular method
depend on the development of a body of practice with the method.  Use in practice is the best
indicator we have of the strengths and weaknesses of particular methods.  Unfortunately we are
only at the beginning of our experience with the application of formal methods thus this section is
rather sketchy.  This classification thus takes the theoretical basis of the method as its basis.  This
will change as we gather more evidence of the success of formal methods in tackling industrial case
studies.

At the coarsest level of characterisation,  it is possible to divide formal methods into two broad
categories: those which centre on properties of data in the system and those which centre on the
interaction.  Data centred methods are well suited to modelling algorithms and data manipulations
where we want to focus on correctness of some transformation of inputs to outputs.  Interaction
centred methods focus on the interaction a system can undertake and so focus on showing
properties like some action will never happen or some action will always eventually happen.  Of
course when we analyse any system we are usually concerned with both kinds of property.  This
suggests we might have to use two methods.  However most formal methods have some
mechanisms for dealing with both kinds of property.

Data centred methods

These methods concentrate on specifying functions or operations to be carried out in the operation.
A variety of specification methods are advocated.  The algebraic approach is usually associated
with axiomatic  specification where the specifier is called on to define the “laws” which the
operations will obey.  The other approach is to model the operations in some pre-existing structure.

Algebraic methods

 This class of formal methods grew out of work on algebraic specification.  The basis of the work is
that certain classes of theories specify algebras and algebras are the natural mathematical model of
systems.  By providing the means to structure theories and to explore the relationships between
different structured theories one can provide a fully formal system within which system
development can proceed.  As it is presented in the literature this approach tends to look like “all or
nothing” but we do not believe this needs to be the case selective application of the algebraic
approach can be beneficial both at the requirements stage when the developed theories can be useful
in characterising the data in the system.  In design and coding the notions of refinement and coding
contained in these approaches may be very helpful.  It may also be that the algebraic
characterisation of the system is helpful in determining the adequacy of test suites.

Historically the system of Bauer  is the first algebraic specification language but since then a
number of other systems have been developed, for example: Extended ML, Act One (Two),
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Larch11, OBJ (n) .  These are the some of the most recent methods taking this approach many others
have led to this stage of development.  The Compass12 Esprit BRA attempted a harmonisation of
approaches this has been quite fruitful leading to the follow on Common Framework Initiative
(CoFI13).  An important development in these systems has been the move away from strict
mathematical equality between objects to a focus on observable behaviour of algebras.  Most
modern methods in this class take this approach.

Tool support has always been a strong part of this approach and almost all the methods mentioned
here offer some form of support from typechecking structured specifications to offering interfaces
to general purpose proof assistants to support the refinement process.

Logics and type theories

 These methods are generally based around some kind of logic in which the objects considered are
classified into some type system and some of those objects can be considered to be programs.  The
commonest kind of computational object is the higher- order function (such systems are oriented
towards functional programming languages) though recent work has attempted to take concurrent
processes as objects.  There is a great deal of work in the area of tool support for this kind of work,
much of it falling under the ESPRIT BRA projects: Types and Proofs for Programs and CLICS
(Categorical Logic in Computer Science)14.  Broadly one can categorise by the logical system or
systems underlying the tool.  Roughly we have:

Martin-Löf Type Theory: This is a particular version of type theory developed by a Swedish
logician.  It is particularly well-suited to the specification and development of programs in a fully
verified manner but as with all the systems mentioned below it has substantial power to model
systems and can provide useful information at stages other than design and development.  Notable
amongst the tools supporting this theory are: ALF and NuPRL15.  These systems are full proof
assistants for very powerful logics substantial experience is available in the area of general theorem

                                                    

11 The Frequently Asked Questions list for Larch provides an excellent source of information on Larch and a
variety of other formal methods.  You can find it at: http://www.cs.iastate.edu/~leavens/larch-faq.html

12 A summary of the results of Compass can be found on the home page of the project, see:
http://www.informatik.uni-bremen.de/~inform/forschung/compass/compass.htm. This has a summary and
extensive bibliography.

13 CoFI has a home page at: http://www.daimi.aau.dk/~pdm/Common  This project is attempting to integrate
the approaches of ASF+SDF, COLD, Extended ML, Larch, OBJ 3, RAISE, Spectrum and Z.  The home page
of the project is a convenient starting point to reach more information on all these approaches.

14 The Types basic research action has a home page at:
http://www.dcs.ed.ac.uk/lfcsinfo/research/types_bra/index.html, there one can find an index of the systems
developed under the BRA.

15 The NuPRL home page is at: http://www.cs.cornell.edu/Info/Projects/NuPrl/nuprl.html
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proving and some for system development.  NuPRL has been used for a number of industry-related
applications including the development of circuits.

Calculus of Constructions: This system is similar to type theory in its expressiveness various
systems implement this and its extensions.  Notable here are Coq16 and Lego17.  Work has been
done on aspects of system development using these systems.  Recent work using Coq has centred
on the use of the system in the specification and development of safety-critical systems.

Higher Order Logic: These systems owe their origins to Scott’s logic LCF and have the longest
pedigree in work supporting system development.  In particular there has been substantial work
done on the development of synchronous hardware via a method usually called regimentation
where time is discretised to the ticks of a clock.  Notable tools supporting such logics are: HOL18,
Isabelle19 and Lambda20.  For HOL and Lambda, there is good support for hardware design via pre-
specified components and special purpose tools and libraries which ease the routine tasks in the
development process.

Other Logics: Most notable here is the nqthm/acl221 logic developed by Boyer and Moore and
supported by Computational Logic Inc.  There is extensive experience of the use of the system to
support the development of computer systems.  The method is focussed on the automated support
tool for the logic.  More recently the PVS22 system has been applied to a number of industrially
related topics including circuit development and avionics systems.

Specification/Program Logics

Broadly one can see these methods as having their intellectual history in the insights into
programming gained by Hoare in the 70’s.  The methods most commonly encountered in this
category are Z23 and VDM24.  Both approaches take the provision of a collection of sound
                                                    

16 Details of Project Coq which is exploring the use of Coq in the development of zero-defect software can be
found at: http://www.inria.fr/Equipes/COQ-eng.html

17 The Lego home page is: http://www.dcs.ed.ac.uk/packages/lego

18 The home page for HOL can be found at: http://www.cl.cam.ac.uk/Research/HVG/HOL/index.html

19 The home page for Isabelle can be found at: http://www.cl.cam.ac.uk/Research/HVG/isabelle.html

20 For information contact Abstract Hardware Ltd at lambda@ahl.co.uk.

21 Details of nqthm/acl2 can be found at the CLINC web page: http://www.cli.com/

22 See http://www.csl.sri.com/pvs.html for more information.  The work on PVS is funded by NASA and the
work surrounding PVS takes avionics as an important (though not exclusive) focus.

23 See the entry in this document for more details.

24 The main homepage for VDM tools can be found at: http://hermes.ifad.dk/products/vdmslproducts.html
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mathematical modelling tools as the basis of their approach.  Both are based on classical set theory
but there are differences in the precise formulation of the mathematical foundations.  The approach
to specification is to provide a mathematical model of the system to be defined and then to provide
specifications of the operations which bring about state change in the system.

The expressive set theories provide a convenient way of describing the system state while
abstracting away from unnecessary detail.  The operations are described by giving pre-and post-
conditions on the state.  These conditions are given in a logical language.  The precondition
expresses the requirement on the state for a successful application of the operation and the post-
condition describes the change of state which should be wrought by the operation.

The design of these formal methods is carefully matched to the needs of the development of
systems which consist of a collection of operations which bring about changes of state.  Both
methods have fairly well developed tools available but so far few are of industrial standard.  The
style of tool ranges from type-checkers which provide fairly basic cheek on the syntax of the
specification to systems which provide full theorem proving capabilities.

VDM: VDM has a well developed system of refinement intended to demonstrate that an
implementation is a refinement of a, specification.  There is a standard for VDM which does
provide for some modularisation of the presentation of specifications.  There is an extensive
literature on the application of VDM to industrial style applications.  A number of institutions run
courses on the use of VDM.

Z: As it stands Z is exclusively a specification method.  Its most distinctive feature is the “schema
calculus” which provides the means to structure specifications at a high level by providing a variety
of composition methods, parameterised schemas etc.  Though Z is only a specification method, a
refinement calculus has been developed as part of the B-tools effort (see the entry for the B method
in this directory).  This method provides the means to derive implementations from Z specifications.
There is an extensive literature on the application of Z to industrial style applications.  A number of
institutions run courses on the use of Z.

Interaction centred methods

Data centred methods have some built-in notion of the kinds of data one expects to use during a
computation - but the do not have a model of how a system interacts with the outside world built-in
as an intrinsic part of the method.  Methods centred on interaction take such a model of interaction
as fundamental and structure the method around that

Automata based methods

These methods use some notion of automata as the fundamental model.  Thus one defines the
collection of sates and the transitions which can be made by the system.  Statecharts and its support
tool Statemate25 is one method with fairly wide industrial use.  This provides a structured way to

                                                    

25 See the URL: http://www.ilogix.com
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design finite automata to describe the dynamics of a system.  The support tool provides an
environment to support graphical presentations of the system.

Another widely used automata based approach is Petri Nets26.  These are used extensively in the
specification and verification of communication protocols and in a number of other areas.  The
industrial applications of Petri nets is quite mature

Process calculi

Process Calculi are useful in developing abstract models of processes during the design phase and
can support a notion of refinement and implementation.  Usually one can reason about such systems
using modal or temporal logic.  Automated tools such as the Edinburgh Concurrency Workbench
coupled with judicious abstraction can support a rather exploratory approach to designing systems
while maintaining certain important properties.  The properties to be checked are usually expressed
in some kind of modal or temporal logic.  This is a very active area of work and a number of
parallel lines of enquiry are being pursued.  Broadly the area can be subdivided between
asynchronous calculi which assume no global synchronisation and synchronous calculi which
assume some king of global synchronisation.  The CONCUR27 projects focus mostly on
asynchronous calculi and their developments into synchronous calculi.  The other approach to be
tested in an industrial context is the use of synchronous programming languages as design tools.
See the SAGA-LUSTRE entry in this directory.

Model checkers

This is a very active area of industrial work.  These techniques aim to provide automated support
for the symbolic debugging of interactive systems.  A large number of industrial organisations are
experimenting with and implementing the use of model checkers in their design process.  A
representative of this approach is the PROMELA/SPIN28 system at Bell Labs.  This provides the
means to specify systems and check they have specified interaction properties.

Formally defined programming languages

One problem with applying any method for reasoning about  systems is a lack of rigour in defining
the meaning of the programming language in use.   Recently the description of programming
languages has become substantially more rigorous.  Examples of this are:

Standard ML29—the description of the language is published and is frozen.  The language
incorporates a very expressive type system incorporating a feature called polymorphism which
                                                    

26 There is an extensive literature on Petri nets and a large number of support tools.  One good starting point
is: http://www.daimi.aau.dk/~petrinet/

27 See the URL: http://www.sics.se/fdt/concur2.html

28 See the URL: http://netlib.bell-labs.com/netlib/spin/whatispin.html

29 See the URL: http://foxnet.cs.cmu.edu/
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encourages software reuse.  The language is capable of supporting both functional and imperative
programming and (via the system of modular programming incorporated in the definition) limited
features of object oriented programming.

SPARK Ada30 - this is a subset of Ada with a rigorously defined semantics and industrial strength
reasoning support.

These languages provide a, rigorous operational semantics which provides an unambiguous
standard against which implementations can be measured and provides the basis for techniques for
modelling and reasoning about program behaviour.  Often tool support is reasonably good.  For
example:

ML type inference: This generates timely and accurate information during the process of coding.  It
is very useful for internal documentation.  Takes a little while for programmers to get used to and is
completely unintelligible to a user/customer.  It is inadequate to describe the functionality of a
system.

                                                    

30 See the URL: http://www.praxis.co.uk/service.lines/critical.systems/spark/sp_lang.stm


